Simplifying a Cube Binomial

Published
<h3>Simplifying a Cube Binomial</h3>

A binomial is any mathematical expression with only two terms, such as “x + 5.” A cubic binomial is a binomial where one or both of the terms is something raised to the third power, such as “x^3 + 5,” or “y^3 + 27.” (Note that 27 is three to the third power, or 3^3.) When the task is to “simplify a cube (or cubic) binomial,” this usually refer to one of three situations: (1) an entire binomial term is cubed, as in “(a + b)^3” or “(a – b)^3”; (2) each of the terms of a binomial is cubed separately, as in “a^3 + b^3” or “a^3 – b^3”; or (3) all other situations in which the highest-power term of a binomial is cubed. There are specialty formulas to handle the first two situations, and a straightforward method to handle the third.

Step 1

Determine which of the five basic kinds of cubic binomial you are working with: (1) cubing a binomial sum, such as “(a + b)^3”; (2) cubing a binomial difference, such as “(a – b)^3”; (3) the binomial sum of cubes, such as “a^3 + b^3”; (4) the binomial difference of cubes, such as “a^3 – b^3”; or (5) any other binomial where the highest power of either of the two terms is 3.



Step 2

In cubing a binomial sum, make use of the following equation:

(a + b)^3 = a^3 + 3(a^2)b + 3a(b^2) + b^3.

Step 3

In cubing a binomial difference, make use of the following equation:

(a – b)^3 = a^3 – 3(a^2)b + 3a(b^2) – b^3.



Step 4

In working with the binomial sum of cubes, make use of the following equation:

a^3 + b^3 = (a + b) (a^2 – ab + b^2).

Step 5

In working with the binomial difference of cubes, make use of the following equation:



a^3 – b^3 = (a – b) (a^2 + ab + b^2).

Step 6

In working with any other cubic binomial, with one exception, the binomial cannot be further simplified. The exception involves situations where both terms of the binomial involve the same variable, such as “x^3 + x,” or “x^3 – x^2.” In such cases, you may factor out the lowest-powered term. For example:

See also  Non-Living Elements of the Deciduous Forest

x^3 + x = x(x^2 + 1)

x^3 – x^2 = x^2(x – 1).

Dave Pennells

By Dave Pennells

Dave Pennells, MS, has contributed his expertise as a career consultant and training specialist across various fields for over 15 years. At City University of Seattle, he offers personal career counseling and conducts workshops focused on practical job search techniques, resume creation, and interview skills. With a Master of Science in Counseling, Pennells specializes in career consulting, conducting career assessments, guiding career transitions, and providing outplacement services. Her professional experience spans multiple sectors, including banking, retail, airlines, non-profit organizations, and the aerospace industry. Additionally, since 2001, he has been actively involved with the Career Development Association of Australia.