Determining Revolutions from Angular Acceleration

Published
<h3>Determining Revolutions from Angular Acceleration</h3>

The equation of motion for a constant acceleration:

(x(t)=x(0)+v(0)t+frac{1}{2}at^2)



has an angular equivalent:

(theta(t)=theta(0)+omega(0)t+frac{1}{2}alpha t^2)

For the uninitiated, θ(t) refers to the measurement of some angle at time ​t​ while θ(0) refers to the angle at time zero. ω(0) refers to the initial angular speed, at time zero. α is the constant angular acceleration.

An example of when you might want to find a revolution count after a certain time ​t​, given a constant angular acceleration, is when a constant torque is applied to a wheel.



Step 1

Suppose you want to find the number of revolutions of a wheel after 10 seconds. Suppose also that the torque applied to generate rotation is 0.5 radians per second-squared, and the initial angular velocity was zero.

Step 2

Plug these numbers into the formula in the introduction and solve for θ(t). Use θ(0)=0 as the starting point, without loss of generality. Therefore, the equation

(theta(t)=theta(0)+omega(0)t+frac{1}{2}alpha t^2)



becomes

(theta(10)=0+0+frac{1}{2}timesfrac{1}{2}times 10^2=25text{ radians})

Step 3

Divide θ(10) by 2π to convert the radians into revolutions. 25 radians / 2π = 39.79 revolutions.

Step 4

Multiply by the radius of the wheel, if you also want to determine how far the wheel traveled.

TL;DR (Too Long; Didn’t Read)

For nonconstant angular momentum, use calculus to integrate the formula for the angular acceleration twice with respect to time to get an equation for θ(t).

Dave Pennells

By Dave Pennells

Dave Pennells, MS, has contributed his expertise as a career consultant and training specialist across various fields for over 15 years. At City University of Seattle, he offers personal career counseling and conducts workshops focused on practical job search techniques, resume creation, and interview skills. With a Master of Science in Counseling, Pennells specializes in career consulting, conducting career assessments, guiding career transitions, and providing outplacement services. Her professional experience spans multiple sectors, including banking, retail, airlines, non-profit organizations, and the aerospace industry. Additionally, since 2001, he has been actively involved with the Career Development Association of Australia.